
Constant Acceleration - Answers

Question Number	Scheme	Mark
6(a)	$s = vt - \frac{1}{2}at^{2}$ $40 = 10 \times 5 - \frac{1}{2}a5^{2}$ $a = 0.8$	M1 A2
(b)	Finding $u (= 6)$ $s = ut + \frac{1}{2}at^2$ (A to M) $20 = 6t + \frac{1}{2}0.8t^2$	M1 M1 A1
	$t = \frac{-15 \pm \sqrt{225 + 200}}{2}$ = 2.8 or 2.81 or better	DM 1 A1
Alternative :	Finding $v (= \sqrt{68})$ $s = vt - \frac{1}{2}at^2$ (A to M) $20 = \sqrt{68}t - \frac{1}{2}0.8t^2$	M1 M1 A1
Alternative :	$t = \frac{\sqrt{68} \pm \sqrt{68 - 32}}{0.8}$ = 2.8 or 2.81 or better	DM1 A1 M2
	$s = vt_1 - \frac{1}{2}at_1^2 (M \text{ to } B)$ 20 = 10t_1 - $\frac{1}{2}0.8t_1^2$ $t_1 = \frac{10 \pm \sqrt{100 - 32}}{0.8}$	A1 DM1
	0.8 = 2.192	A1 (

June 2017 Mathematics Advanced Paper 1: Mechanics 1

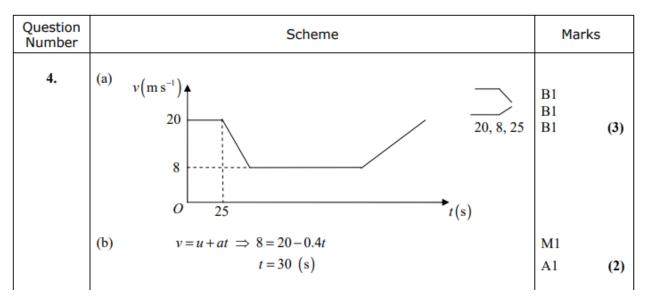
	Notes	
6(a)	First M1 for a complete method to produce a value for <i>a</i> . They may use two (or more equations) and solve for <i>a</i> .(see possible equations) A2 if all correct, A1A0 for one error Third A1 for 0.8 (m s ⁻²) Possible equations:	
	$40 = 5u + \frac{1}{2}a.5^{2}$ $10^{2} = u^{2} + 2a.40$ 10 = u + 5a	
	10 = u + 5a $40 = \frac{(u+10)}{2}.5$	
6(b)	First M1 for attempt to find a value for u (This may have been done in part (a) but MUST be used in (b)) Second M1 for a complete method (may involve 2 or more <i>suvat</i> equations) for finding an equation in <i>t</i> only First A1 for a correct equation Third M1, dependent on previous M, for solving their equation for <i>t</i> Second A1 for 2.8 (s) or better or $\frac{5(2\sqrt{17}-6)}{4}$; $\frac{40}{6+2\sqrt{17}}$	
	Second A1 for 2.8 (s) or better or $\frac{4}{6+2\sqrt{17}}$	

June 2015 Mathematics Advanced Paper 1: Mechanics 1

(c)	$6300 = \frac{V(300+300-6V)}{2} \text{ or } \frac{1}{2}2V.V + (300-6V).V + \frac{1}{2}4V.V$ $V^{2} - 100V + 2100 = 0$ $(V - 30)(V - 70) = 0$	M1 A1 ft A1 M1 A1	
	V = 30 or 70 V = 30 (< 50)	Al	(6) 13
	Notes		
7(a)	B1 for a trapezium with line starting and finishing on the <i>t</i> -axis B1 for V correctly marked		
(b)	First M1 for a correct method First A1 for $V/0.5$ oe Second A1 for $V/0.25$ oe Second M1 for (300 – sum of previous answers) Allow 5 instead of 300. Third A1 for $300 - 6V$ oe		
(c)	First M1 for using the area under the curve (distance travelled) to form an equation in V only. (Allow use of 6.3 but must see $\frac{1}{2}$ used at least once in their expression.) First A1 ft on their answers in (b) for a correct equation so must have used 6300 not 6.3 Second A1 for correct equation in form $aV^2 + bV + c = 0$ Second M1 for solving a 3 term quadratic. (Can be implied by correct answers) Second A1 for either 30 or 70		

May 2013 Mathematics Advanced Paper 1: Mechanics 1

3.


Question Number	Scheme	Marks
4.		
(a)	$240 = \frac{1}{2}(u+34)10$	M1 A1
	<i>u</i> = 14	A1
		(3)
(b)	$34 = 14 + 10a \implies a = 2$	M1 A1
	$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
	$t^2 + 14t - 120 = 0$	
	Solving, $t = -20$ or 6	DM 1
	t = 6	A1
	OR	
	$34 = 14 + 10a \implies a = 2$	M1 A1
	$v^2 = 14^2 + 2 \times 2 \times 120 \implies v = 26$	
	AND $26 = 14 + 2t$	M1 A1
	<i>t</i> = 6	DM 1 A1
		(6)
		[9]
	Notes for Question 4	
	First M1 for a complete method to produce an equation in u only.	
Q4(a)	First A1 for a correct equation. $(u^2 - 48u + 476 = 0$ oe is possible).	
	Second A1 for $u = 14$.	
	EITHER First M1 for an equation in a call. (M0 if $u = 24$ when $a = 120$ is used)	
	First M1 for an equation in <i>a</i> only. (M0 if $v = 34$ when $s = 120$ is used) First A1 for $a = 2$. (This may have been found in part (a))	
	Second M1 for a 3-term quadratic equation in t only, allow sign errors	
	(must have found a value of a. (M0 if $v = 34$ when $s = 120$ is used)	
	Second A1 for a correct equator.	
	Third M1 dependent on previous M1 for solving for t.	
	Third A1 for $t = 6$	
Q4(b)		
	OR	
	First M1 for an equation in a only.	
	First A1 for $a = 2$. (This may have been found in part (a))	
	Second M1 for a complete method to obtain an equation in t only, allow	
	sign errors. (must have found a value of <i>a</i>)	
	Second A1 for a correct equaton.	
	Third M1 dependent on previous M1 for solving for t.	
	Third A1 for $t = 6$	

4.

Question Number	Scheme	Marks
5.		
(a)	Speed 🔺 Shape	B1
	Figures	B1
	22	(2)
	0 ¹ 30 30+7 120 Time	
(b)	$\frac{(120+T)22}{2} = 2145$	M1 A1
	T = 75	A1
		(3)
(c)	$\frac{(t+t-30)22}{2} = 990$	M1 A1
	t = 60	A1
	Answer = 60 - 10 = 50	A1
		(4)
(d)	$990 = 0.5a50^2$	M1
	a = 0.79, 0.792, 99/125 oe	A1
		(2)
		[11]
)	Notes for Question 5	
	Totes for Question 5	
Q5(a)	First B1 for a trapezium starting at the origin and ending on the <i>t</i> -axis. Second B1 for the figures marked (allow missing 0 and a delineator of for <i>T</i>) (allow if they have used $T = 75$ correctly on their graph)	
Q5(b)	First M1 for producing an equation in their <i>T</i> only by equating the area of the trapezium to 2145, with the correct no. of terms. If using a single trapezium, we need to see evidence of using $\frac{1}{2}$ the sum of the two parallel sides or if using triangle(s), need to see $\frac{1}{2}$ base x height. Second A1 cao for a correct equation in <i>T</i> (<u>This is not f.t. on their <i>T</i></u>) Third A1 for <i>T</i> = 75. N.B. Use of a single <i>suvat</i> equation for the whole motion of the car e.g. $s = t(u+v)/2$ is M0	

Q5(c)	First M1 for producing an equation in <i>t</i> only (they may use $(t - 30)$ oe as their variable) by equating the area of the trapezium to 990, with the correct no. of terms. If using a trapezium, we need to see evidence of using ½ the sum of the two parallel sides or if using triangle(s), need to see ½ base x height. First A1 for a correct equation. Second A1 for $t = 60$ (Allow $30 + 30$). Third A1 for answer of 50. N.B. Use of a single <i>suvat</i> equation for the whole motion of the car e.g. $s = t(u+v)/2$ is M0. Use of the motion of the motorcycle is M0 (insufficient information). Use of $v = 22$ for the motorcycle is M0.	
Q5(d)	First M1 for an equation in a only. First A1 for $a = 0.79$, 0.792, 99/125 oe N.B. Use of $v = 22$ for the motorcycle is M0.	

May 2012 Mathematics Advanced Paper 1: Mechanics 1

5.

(c) $1960 = (25 \times 20) + (30 \times 8) + (\frac{1}{2} \times 30 \times 12) + (60 \times 8) + 8 \times t + \frac{1}{2} \times t \times 12$	M1A3 ft (2,1,0)
1960 = 500 + 240 + 180 + 480 + 14t	DM1 A1
T = 115 + 40 = 155	DM1 A1
N.B. SEE ALTERNATIVES	(8) [13]

Question 4(a)

First B1 for 1st section of graph Second B1 for 2nd section Third B1 for the figures 20, 8 and 25

Ouestion 4(b)

M1 for a complete method to produce an equation in *t* only; allow (20 - 8)/0.4A1 for 30 N.B. Give A0 for *t* = - 30, even if changed to 30, but then allow use of 30 in part (c), where full marks could then be scored.

Question 4(c)

First M1 (generous) for clear attempt to find whole area under *their* graph (must include at least one "1/2"), in terms of *a single unknown time (t say)*, and equate it to 1960.

First A3, ft on their (b), for a correct equation.

Deduct 1 mark for each numerical error, or omission, in each of the 4 sections of the area corresponding to each stage of the motion. (they may 'slice' it, horizontally into 3 sections, or a combination of the two) Second DM1, dependent on first M1, for simplifying to produce an equation with all their t terms collected. Fourth A1 for a correct equation for t or T

Third DM1, dependent on second M1. for solving for *T* Fifth A1 155

Please note that any incorrect answer to (b) will lead to an answer of 155 in (c) and can score max 6/8;

Solutions with the correct answer of 155 will need to be checked carefully.

Solutions to 4 (c) N.B. t = T - 115

A.	$1960 = (25 \times 20) + (30 \times 8) + (\frac{1}{2} \times 30 \times 12) + (60 \times 8) + 8 \times t + \frac{1}{2} \times t \times 12$	M1 A3 ft
	1960 = 500 + 240 + 180 + 480 + 14t	M1 A1
	T = 115 + 40	M1
	= 155	A1

B.	$1960 = (25 x 20) + \frac{1}{2} x 30 x (20 + 8) + (60 x 8) + \frac{1}{2} x t x (20 + 8)$ 1960 = 500 + 420 + 480 + 14t T = 115 + 40 = 155	M1 A3 ft M1 A1 M1 A1
C.	$1960 = 8T + \frac{1}{2} \times 12 \times (55 + 25) + \frac{1}{2} \times 12 \times (T - 115)$ 1960 = 8T + 480 + 6T - 690	M1 A3 ft
	$ 1960 = 14T - 210 \\ 155 = T $	M1 A1 M1 A1
D.	$1960 = 20T - \frac{1}{2} \times 12 \times (60 + T - 25)$ 1960 = 20T - 6T - 210	M1 A3 ft
	1960 = 14T - 210 155 = T	M1 A1 M1 A1
E.	$1960 = (55 \times 20) - \frac{1}{2} \times 30 \times 12 + (60 \times 8) + \frac{1}{2} \times t \times (20 + 8)$ 1960 = 1100 - 180 + 480 + 14t T = 115 + 40	M1 A3 ft M1 A1 M1
	= 155	A1
F.	$1960 = (8 \times 115) + \frac{1}{2} \times 12 \times (55 + 25) + \frac{1}{2} \times 28 \times (T - 115)$ 1960 = 920 + 480 + 14T - 1610	M1 A3 ft
	$ 1960 = 14T - 210 \\ 155 = T $	M1 A1 M1 A1

6. Q2. (a) First two line segments Third line segment 8, 75 B1 s B1 B1 (3) 8 0 75 t $\frac{1}{2} \times 8 \times (T+75) = 500$ M1 A2 (1,0) (b) Solving to T = 50DM1 A1 (5) [8]

Jan 2010 Mathematics Advanced Paper 1: Mechanics 1